

A252959


Number of (n+2)X(6+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order


1



3465, 651, 985, 1551, 2822, 5100, 8767, 16909, 32096, 57282, 113321, 218547, 401170, 797512, 1556859, 2906865, 5807156, 11393142, 21638149, 43233631, 85341470, 163967772, 328165247, 649686165, 1261654624, 2524384498, 5014289697
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Column 6 of A252961


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210


FORMULA

Empirical: a(n) = 5*a(n1) 6*a(n2) 2*a(n3) 5*a(n4) +15*a(n5) +53*a(n6) 145*a(n7) +120*a(n8) 44*a(n9) +25*a(n10) 21*a(n11) +6*a(n12) for n>15


EXAMPLE

Some solutions for n=2
..0..1..0..0..2..0..0..3....0..1..1..2..1..1..2..1....0..1..1..2..2..3..3..0
..4..4..0..4..4..0..4..4....1..0..1..1..2..1..1..2....3..0..0..1..1..2..2..4
..1..0..0..1..0..0..2..0....3..3..1..3..3..1..3..3....2..3..3..0..0..1..1..2
..0..1..0..0..1..0..0..2....2..1..1..0..1..1..2..1....4..2..2..3..3..0..0..1


CROSSREFS

Sequence in context: A235830 A235586 A252967 * A224686 A125017 A307111
Adjacent sequences: A252956 A252957 A252958 * A252960 A252961 A252962


KEYWORD

nonn


AUTHOR

R. H. Hardin, Dec 25 2014


STATUS

approved



